O estudo das funções é importante, uma vez que elas podem ser aplicadas em diferentes circunstâncias: nas engenharias, no cálculo estatístico de animais em extinção, etc.
O significado de função é intrínseco à matemática, permanecendo o mesmo para qualquer tipo de função, seja ela do 1° ou do 2° grau, ou uma função exponencial ou logarítmica. Portanto, a função é utilizada para relacionar valores numéricos de uma determinada expressão algébrica de acordo com cada valor que a variável x assume.
Sendo assim, a função do 1° grau relacionará os valores numéricos obtidos de expressões algébricas do tipo (ax + b), constituindo, assim, a função f(x) = ax + b.
Note que para definir a função do 1° grau, basta haver uma expressão algébrica do 1° grau. Como dito anteriormente, o objetivo da função é relacionar para cada valor de x um valor para o f(x). Vejamos um exemplo para a função f(x)= x – 2.
x = 1, temos que f(1) = 1 – 2 = –1
x = 4, temos que f(4) = 4 – 2 = 2
x = 4, temos que f(4) = 4 – 2 = 2
Note que os valores numéricos mudam conforme o valor de x é alterado, sendo assim obtemos diversos pares ordenados, constituídos da seguinte maneira: (x, f(x)). Veja que para cada coordenada x, iremos obter uma coordenada f(x). Isso auxilia na construção de gráficos das funções.
Portanto, para que o estudo das funções do 1° grau seja realizado com sucesso, compreenda bem a construção de um gráfico e a manipulação algébrica das incógnitas e dos coeficientes.
Coeficiente Linear de uma Função do 1º Grau
As funções do tipo f(x) = y = ax + b, com a e b números reais e a ≠ 0, são consideradas do 1º grau. Ao serem representadas no plano cartesiano, constituem uma reta crescente ou decrescente. E no caso de a = 0, a função é chamada de constante.
Uma função possui pontos considerados essenciais para a composição correta de seu gráfico, e um desses pontos é dado pelo coeficiente linear da reta representado na função pela letra b, que indica por qual ponto numérico a reta intercepta o eixo das ordenadas (y).
Nas funções a seguir, observe o valor numérico do coeficiente linear e o gráfico representativo da função:
y = x + 1
b = 1
b = 1
y = –x – 1
b = –1
y = 2x + 4
b = 4
b = 4
y = 2x – 4
b = – 4
b = – 4
1. Estudo dos Sinais
Definimos função como relação entre duas grandezas representadas por x e y. No caso de uma função do 1º grau, sua lei de formação possui a seguinte característica: y = ax + b ou f(x) = ax + b, onde os coeficientes a e b pertencem aos reais e diferem de zero. Esse modelo de função possui como representação gráfica a figura de uma reta, portanto, as relações entre os valores do domínio e da imagem crescem ou decrescem de acordo com o valor do coeficiente a. Se o coeficiente possui sinal positivo, a função é crescente, e caso ele tenha sinal negativo, a função é decrescente.
Função Crescente – a > 0
Na função crescente, à medida que os valores de x aumentam, os valores de y também aumentam; ou, à medida que os valores de x diminuem, os valores de y diminuem. Observe a tabela de pontos e o gráfico da função y = 2x – 1.
No caso da função decrescente, à medida que os valores de x aumentam, os valores de y diminuem; ou, à medida que os valores de x diminuem, os valores de y aumentam. Veja a tabela e o gráfico da função y = – 2x – 1.
De acordo as análises feitas sobre as funções crescentes e decrescentes do 1º grau, podemos relacionar seus gráficos aos sinais. Veja:
Sinais da função do 1º grau crescente
Determine os sinais da função y = 3x + 9.
Fazendo y = 0 – cálculo da raiz da função
3x + 9 = 0
3x = –9
x = –9/3
x = – 3
A função possui o coeficiente a = 3, no caso maior que zero, portanto, a função é crescente.
Função Crescente – a > 0
x
|
y
|
-2
|
-5
|
-1
|
-3
|
0
|
-1
|
1
|
1
|
2
|
3
|
Função Decrescente – a < 0
x
|
y
|
-2
|
3
|
-1
|
1
|
0
|
-1
|
1
|
-3
|
2
|
-5
|
Sinais da função do 1º grau crescente
Sinais da função do 1º grau decrescente
Exemplo:Determine os sinais da função y = 3x + 9.
Fazendo y = 0 – cálculo da raiz da função
3x + 9 = 0
3x = –9
x = –9/3
x = – 3
A função possui o coeficiente a = 3, no caso maior que zero, portanto, a função é crescente.
2. Gráfico de Função do 1º grau
Toda função pode ser representada graficamente, e a função do 1º grau é formada por uma reta. Essa reta pode ser crescente ou decrescente, dependendo do sinal de a.
Quando a > 0
Isso significa que a será positivo. Por exemplo, dada a função: f(x) = 2x – 1 ou
y = 2x - 1, onde a = 2 e b = -1. Para construirmos seu gráfico devemos atribuir valores reais para x, para que possamos achar os valores correspondentes em y.
x y
- 2 - 5
- 1 - 3
0 - 1
1 / 2 0
1 1
Podemos observar que conforme o valor de x aumenta o valor de y também aumenta, então dizemos que quando a > 0 a função é crescente.
Com os valores de x e y formamos as coordenadas, que são pares ordenados que colocamos no plano cartesiano para formar a reta. Veja:
No eixo vertical colocamos os valores de y e no eixo horizontal colocamos os valores de x.
Quando a > 0
Isso significa que a será positivo. Por exemplo, dada a função: f(x) = 2x – 1 ou
y = 2x - 1, onde a = 2 e b = -1. Para construirmos seu gráfico devemos atribuir valores reais para x, para que possamos achar os valores correspondentes em y.
x y
- 2 - 5
- 1 - 3
0 - 1
1 / 2 0
1 1
Podemos observar que conforme o valor de x aumenta o valor de y também aumenta, então dizemos que quando a > 0 a função é crescente.
Com os valores de x e y formamos as coordenadas, que são pares ordenados que colocamos no plano cartesiano para formar a reta. Veja:
No eixo vertical colocamos os valores de y e no eixo horizontal colocamos os valores de x.
Quando a < 0
Isso indica que a será negativo. Por exemplo, dada a função f(x) = - x + 1 ou
y = - x + 1, onde a = -1 e b = 1. Para construirmos seu gráfico devemos atribuir valores reais para x, para que possamos achar os valores correspondentes em y.
x y
-2 3
-1 2
0 1
1 0
Podemos observar que conforme o valor de x aumenta o valor de y diminui, então dizemos que quando a < 0 a função é decrescente.
Com os valores de x e y formamos as coordenadas que são pares ordenados que colocamos no plano cartesiano para formar a reta. Veja:
No eixo vertical colocamos os valores de y e no eixo horizontal colocamos os valores de x.
Características de um gráfico de uma função do 1º grau.
• Com a > 0 o gráfico será crescente.
• Com a < 0 o gráfico será decrescente.
• O ângulo α formado com a reta e com o eixo x será agudo (menor que 90°) quando a > 0.
• O ângulo α formado com reta e com o eixo x será obtuso (maior que 90º) quando a < 0.
• Na construção de um gráfico de uma função do 1º grau basta indicar apenas dois valores pra x, pois o gráfico é uma reta e uma reta é formada por, no mínimo, 2 pontos.
• Apenas um ponto corta o eixo x, e esse ponto é a raiz da função.
• Apenas um ponto corta o eixo y, esse ponto é o valor de b.
Isso indica que a será negativo. Por exemplo, dada a função f(x) = - x + 1 ou
y = - x + 1, onde a = -1 e b = 1. Para construirmos seu gráfico devemos atribuir valores reais para x, para que possamos achar os valores correspondentes em y.
x y
-2 3
-1 2
0 1
1 0
Podemos observar que conforme o valor de x aumenta o valor de y diminui, então dizemos que quando a < 0 a função é decrescente.
Com os valores de x e y formamos as coordenadas que são pares ordenados que colocamos no plano cartesiano para formar a reta. Veja:
No eixo vertical colocamos os valores de y e no eixo horizontal colocamos os valores de x.
Características de um gráfico de uma função do 1º grau.
• Com a > 0 o gráfico será crescente.
• Com a < 0 o gráfico será decrescente.
• O ângulo α formado com a reta e com o eixo x será agudo (menor que 90°) quando a > 0.
• O ângulo α formado com reta e com o eixo x será obtuso (maior que 90º) quando a < 0.
• Na construção de um gráfico de uma função do 1º grau basta indicar apenas dois valores pra x, pois o gráfico é uma reta e uma reta é formada por, no mínimo, 2 pontos.
• Apenas um ponto corta o eixo x, e esse ponto é a raiz da função.
• Apenas um ponto corta o eixo y, esse ponto é o valor de b.
3. Raiz de uma Função do 1º Grau
As funções do tipo y = ax + b ou f(x) = ax + b, onde a e b assumem valores reais e a ≠ 0 são consideradas funções do 1º grau. Esse modelo de função possui como representação geométrica a figura de uma reta, sendo a posição dessa reta dependente do valor do coeficiente a. Observe:
Função crescente: a > 0.
Função crescente: a > 0.
Função decrescente: a < 0.
Raiz da função
Calcular o valor da raiz da função é determinar o valor em que a reta cruza o eixo x, para isso consideremos o valor de y igual a zero, pois no momento em que a reta intersecta o eixo x, y = 0. Observe a representação gráfica a seguir:
Calcular o valor da raiz da função é determinar o valor em que a reta cruza o eixo x, para isso consideremos o valor de y igual a zero, pois no momento em que a reta intersecta o eixo x, y = 0. Observe a representação gráfica a seguir:
Podemos estabelecer uma formação geral para o cálculo da raiz de uma função do 1º grau, basta criar uma generalização com base na própria lei de formação da função, considerando y = 0 e isolando o valor de x (raiz da função). Veja:
y = ax + b
y = 0
ax + b = 0
ax = –b
x = –b/a
Portanto, para calcularmos a raiz de uma função do 1º grau, basta utilizar a expressão x = x = –b/a.
y = ax + b
y = 0
ax + b = 0
ax = –b
x = –b/a
Portanto, para calcularmos a raiz de uma função do 1º grau, basta utilizar a expressão x = x = –b/a.
Exemplo 1
Calcule a raiz da função y = 2x – 9, esse é o momento em que a reta da função intersecta o eixo x.
Resolução:
x = –b/a
x = –(–9)/2
x = 9/2
x = 4,5
Exemplo 2
Dada a função f(x) = –6x + 12, determine a raiz dessa função.
Resolução
x = –b/a
x = –12 / –6
x = 2
Nenhum comentário:
Postar um comentário