segunda-feira, 10 de dezembro de 2012

função do 1º grau


O estudo das funções é importante, uma vez que elas podem ser aplicadas em diferentes circunstâncias: nas engenharias, no cálculo estatístico de animais em extinção, etc.
O significado de função é intrínseco à matemática, permanecendo o mesmo para qualquer tipo de função, seja ela do 1° ou do 2° grau, ou uma função exponencial ou logarítmica. Portanto, a função é utilizada para relacionar valores numéricos de uma determinada expressão algébrica de acordo com cada valor que a variável x assume.
Sendo assim, a função do 1° grau relacionará os valores numéricos obtidos de expressões algébricas do tipo (ax + b), constituindo, assim, a função f(x) = ax + b.
Note que para definir a função do 1° grau, basta haver uma expressão algébrica do 1° grau. Como dito anteriormente, o objetivo da função é relacionar para cada valor de x um valor para o f(x). Vejamos um exemplo para a função f(x)= x – 2.
x = 1, temos que f(1) = 1 – 2 = –1
x = 4, temos que f(4) = 4 – 2 = 2
Note que os valores numéricos mudam conforme o valor de x é alterado, sendo assim obtemos diversos pares ordenados, constituídos da seguinte maneira: (x, f(x)). Veja que para cada coordenada x, iremos obter uma coordenada f(x). Isso auxilia na construção de gráficos das funções.
Portanto, para que o estudo das funções do 1° grau seja realizado com sucesso, compreenda bem a construção de um gráfico e a manipulação algébrica das incógnitas e dos coeficientes.

Coeficiente Linear de uma Função do 1º Grau


As funções do tipo f(x) = y = ax + b, com a e b números reais e a ≠ 0, são consideradas do 1º grau. Ao serem representadas no plano cartesiano, constituem uma reta crescente ou decrescente. E no caso de a = 0, a função é chamada de constante.
Uma função possui pontos considerados essenciais para a composição correta de seu gráfico, e um desses pontos é dado pelo coeficiente linear da reta representado na função pela letra b, que indica por qual ponto numérico a reta intercepta o eixo das ordenadas (y).
Nas funções a seguir, observe o valor numérico do coeficiente linear e o gráfico representativo da função:

y = x + 1
b = 1



y = –x – 1
b = –1

 y = 2x + 4
b = 4

 


y = 2x – 4
b = – 4

1. Estudo dos Sinais


Definimos função como relação entre duas grandezas representadas por x e y. No caso de uma função do 1º grau, sua lei de formação possui a seguinte característica: y = ax + b ou f(x) = ax + b, onde os coeficientes a e b pertencem aos reais e diferem de zero. Esse modelo de função possui como representação gráfica a figura de uma reta, portanto, as relações entre os valores do domínio e da imagem crescem ou decrescem de acordo com o valor do coeficiente a. Se o coeficiente possui sinal positivo, a função é crescente, e caso ele tenha sinal negativo, a função é decrescente.

Função Crescente – a > 0

Na função crescente, à medida que os valores de x aumentam, os valores de y também aumentam; ou, à medida que os valores de x diminuem, os valores de y diminuem. Observe a tabela de pontos e o gráfico da função y = 2x – 1.

x
y
-2
-5
-1
-3
0
-1
1
1
2
3


Função Decrescente – a < 0
No caso da função decrescente, à medida que os valores de x aumentam, os valores de y diminuem; ou, à medida que os valores de x diminuem, os valores de y aumentam. Veja a tabela e o gráfico da função y = – 2x – 1.

x
y
-2
3
-1
1
0
-1
1
-3
2
-5

De acordo as análises feitas sobre as funções crescentes e decrescentes do 1º grau, podemos relacionar seus gráficos aos sinais. Veja:

Sinais da função do 1º grau crescente

Sinais da função do 1º grau decrescente
Exemplo:

Determine os sinais da função y = 3x + 9.

Fazendo y = 0 – cálculo da raiz da função

3x + 9 = 0
3x = –9
x = –9/3
x = – 3
A função possui o coeficiente a = 3, no caso maior que zero, portanto, a função é crescente.



2. Gráfico de Função do 1º grau


Toda função pode ser representada graficamente, e a função do 1º grau é formada por uma reta. Essa reta pode ser crescente ou decrescente, dependendo do sinal de a.

Quando a > 0

Isso significa que a será positivo. Por exemplo, dada a função: f(x) = 2x – 1 ou
y = 2x - 1, onde a = 2 e b = -1. Para construirmos seu gráfico devemos atribuir valores reais para x, para que possamos achar os valores correspondentes em y.

  x           y
- 2        - 5 
- 1        - 3
0          - 1 
1 / 2       0
 1           1 

Podemos observar que conforme o valor de x aumenta o valor de y também aumenta, então dizemos que quando a > 0 a função é crescente.

Com os valores de x e y formamos as coordenadas, que são pares ordenados que colocamos no plano cartesiano para formar a reta. Veja:

No eixo vertical colocamos os valores de y e no eixo horizontal colocamos os valores de x.



 
Quando a < 0 

Isso indica que a será negativo. Por exemplo, dada a função f(x) = - x + 1 ou
y = - x + 1, onde a = -1 e b = 1. Para construirmos seu gráfico devemos atribuir valores reais para x, para que possamos achar os valores correspondentes em y.

  x         y
-2        3
-1        2
0         1
1         0

Podemos observar que conforme o valor de x aumenta o valor de y diminui, então dizemos que quando a < 0 a função é decrescente.

Com os valores de x e y formamos as coordenadas que são pares ordenados que colocamos no plano cartesiano para formar a reta. Veja:

No eixo vertical colocamos os valores de y e no eixo horizontal colocamos os valores de x.


Características de um gráfico de uma função do 1º grau.

• Com a > 0 o gráfico será crescente.

• Com a < 0 o gráfico será decrescente.

• O ângulo α formado com a reta e com o eixo x será agudo (menor que 90°) quando a > 0.

• O ângulo α formado com reta e com o eixo x será obtuso (maior que 90º) quando a < 0.

• Na construção de um gráfico de uma função do 1º grau basta indicar apenas dois valores pra x, pois o gráfico é uma reta e uma reta é formada por, no mínimo, 2 pontos.

• Apenas um ponto corta o eixo x, e esse ponto é a raiz da função.

• Apenas um ponto corta o eixo y, esse ponto é o valor de b.

3. Raiz de uma Função do 1º Grau


As funções do tipo y = ax + b ou f(x) = ax + b, onde a e b assumem valores reais e a ≠ 0 são consideradas funções do 1º grau. Esse modelo de função possui como representação geométrica a figura de uma reta, sendo a posição dessa reta dependente do valor do coeficiente a. Observe:

Função crescente: a > 0.

Função decrescente: a < 0.
Raiz da função

Calcular o valor da raiz da função é determinar o valor em que a reta cruza o eixo x, para isso consideremos o valor de y igual a zero, pois no momento em que a reta intersecta o eixo x, y = 0. Observe a representação gráfica a seguir:
Podemos estabelecer uma formação geral para o cálculo da raiz de uma função do 1º grau, basta criar uma generalização com base na própria lei de formação da função, considerando y = 0 e isolando o valor de x (raiz da função). Veja:

y = ax + b
y = 0
ax + b = 0
ax = –b
x = –b/a
Portanto, para calcularmos a raiz de uma função do 1º grau, basta utilizar a expressão x = x = –b/a.

Exemplo 1

Calcule a raiz da função y = 2x – 9, esse é o momento em que a reta da função intersecta o eixo x.

Resolução:
x = –b/a
x = –(–9)/2
x = 9/2
x = 4,5


Exemplo 2

Dada a função f(x) = –6x + 12, determine a raiz dessa função.

Resolução
x = –b/a
x = –12 / –6
x = 2

Nenhum comentário:

Postar um comentário